News

9th March 2022
Figure 1: Simulated state diagram illustrating various membrane structures for different Peclet numbers (Pe) characterizing particle propulsion strength and volume fractions (ϕ) of active particles. The three main regimes are tethering (red symbols), fluctuating (blue symbols) and bola/prolate (brown symbols) vesicle shapes. Each dot containing a grid pattern indicates the position of the nearest snapshot within the shape diagram. Simulations mimic a nearly tensionless flaccid vesicle. Copyright: authors

From Soft Active Systems to Synthetic Cells

Scientists from the ETH Zurich and Forschungszentrum Jülich highlight their recent collaborative study on a novel active system of self-propelled particles (SPPs) enclosed in a lipid vesicle, which exhibits dramatic shape changes resembling... (Read more)
8th March 2022
The new concept makes it possible to induce complex behaviour in adaptive and communicating soft matter microsystems. Copyright: Avik Samanta

Towards the Minimalistic Design of Life-like Abiotic Systems

We unravelled polymer-like phase-separation behaviour in multiblock single-stranded DNA which provides an opportunity to fabricate all-DNA protocells with several encoded sequences for post-functionalization with spatio-temporal... (Read more)
19th November 2021
Visualization of the exchange mechanism of telechelic chains in flower-like micelles via a sequence of consecutive equilibrium steps. Diffusion of free telechelic chains is excluded. Reprinted with permission from König N. et al., Phys. Rev. Lett. 124, 197801 (2020). Copyright 2020 by the American Physical Society.

Molecular Exchange of Telechelic Polymer Micelles

Telechelic polymers encompass many interesting aspects of soft matter physics – including hierarchical self-assembly, non-Newtonian flow behaviour, and colloidal interactions. Furthermore, they are important as associative thickeners in products used in daily life... (Read more)
18th November 2021

The GNeuS Project

Research with neutrons provides unique insights into materials and phenomena that cannot be gained using other methods. From this autumn, a groundbreaking project will ensure the most effective use of the research potential... (Read more)
Research Gate